Схема работы двс. Общее устройство и принцип работы двигателя

Составляющие детали двигателя машины:

Цилиндр и картер, защищенный снизу поддоном;

Поршень с компрессионными кольцами, расположенный внутри цилиндра;

Коленчатый вал, который движется в коренных подшипниках картера.

Элементы коленчатого вала: коренные шейки, щеки и шатунные шейки. С помощью цилиндра, поршня, шатуна и коленчатого вала кривошипно-шатунный механизм приводит в движение поршни, в результате чего происходит вращение коленчатого вала.

Поверх цилиндров установлен блок головки с клапанами. Их открытие и закрытие технически согласовывается с вращением коленчатого вала, что приводит в последовательное движение поршень.

Поршень перемещается к верхней конечной точке (ВМТ) и нижней конечной точке (НМТ).

При работающем двигателе автомобиля, поршень движется без остановок от ВМТ до НМТ благодаря маховику в форме диска и напрессованного плотно на него металлического венца с зубьями виде обода.

Почему двигатель работает?

Работа двигателя основана на том, что при подаче топлива в камеру сгорания в положении ВМТ, от свечи запала подается искра и происходит мини-взрыв топлива. При этом давление взрывных газов выталкивает поршень до НМТ. В данном процессе поочередно оказываются задействованы все поршни двигателя, приводящие в движение криво-шатунный механизм коленчатого вала, что и позволяет автомобилю двигаться.

Для постоянной и правильно работы двигателя необходимо чтобы во впускной клапан периодически поступали новые порции воздуха и горючего через форсунки. Отработанные газы, после их сгорания, выталкиваются из камеры сгорания через выпускной клапан. За это отвечает механизм газораспределения автомобиля и система впрыска топлива.

Назначение систем и механизмов автомобильного двигателя

Кривошипно-шатунный механизм – приводит в возвратно-поступательное движение поршни, что влечет за собой вращение коленвала.

Система подачи топлива – служит для дозированного впрыска горючего в двигатель автомобиля.

Механизм газораспределения – отвечает за своевременный впуск и выпуск отработанных газов в двигателе.

Система зажигания – служит для подачи прерывистого сигнала электротока по бронепроводам высокого напряжения на свечи зажигания, в результате чего образуется искра в камере сгорания двигателя и происходит воспламенения горючей смеси.

Система охлаждения – защищает двигатель от перегрева посредством механического (встречного потока воздуха) либо статического включения принудительного обдува двигателя крыльчаткой, расположенной в непосредственной близости к радиатору.

Система смазки – обеспечивает подачу масла по маслоканалам к движущимся и трущимся механизмам, дабы уменьшить их износ. Маслосистема включает в себя поддон с маслом, насос, фильтры тонкой и грубой очистки, маслоканалы и масляные клапана.

Также автомобиль оборудован пусковым устройством, состоящим из аккумулятора, стартера, замка зажигания и другими приборами контроля, управления и обеспечения жизнедеятельности автомобиля.

Вы можете задать интересующие вас вопросы по теме представленной статьи, оставив свой комментарий внизу страницы.

Вам ответит заместитель генерального директора автошколы «Мустанг» по учебной работе

Преподаватель высшей школы, кандидат технических наук

Кузнецов Юрий Александрович

Часть 1. ДВИГАТЕЛЬ И ЕГО МЕХАНИЗМЫ

Двигатель является источником механической энергии.

На подавляющем большинстве автомобилей применяется двигатель внутреннего сгорания.

Двигатель внутреннего сгорания — это устройство, в котором химическая энергия топлива превращается в полезную механическую работу.

Автомобильные двигатели внутреннего сгорания классифицируются:

По роду применяемого топлива:

Легкие жидкие (газ, бензин),

Тяжелые жидкие (дизельное топливо).

Бензиновые двигатели

Бензиновые карбюраторные. Смесь топлива с воздухом готовится в карбюраторе или во впускном коллекторе при помощи распыляющих форсунок (механических или электрических), далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи .

Бензиновые инжекторные Смесеобразование происходит путём впрыска бензина во впускной коллектор или непосредственно в цилиндр при помощи распыляющих форсунок ( инжектор ов). Существуют системы одноточечного и распределённого впрыска различных механических и электронных систем. В механических системах впрыска дозация топлива осуществляется плунжерно — рычажным механизмом с возможностью электронной корректировки состава смеси. В электронных же системах смесеобразование осуществляется под управлением электронного блока управления (ЭБУ) впрыском, управляющим электрическими бензиновыми вентилями.

Газовые двигатели

Двигатель сжигает в качестве топлива углеводороды, находящиеся в газообразном состоянии. Чаще всего газовые двигатели работаю на пропане, но есть и другие, работающие на попутных (нефтяных), сжиженном, доменных, генераторных и других видах газообразного топлива.

Принципиальное отличие газовых двигателей от бензиновых и дизельных в более высокой степени сжатия. Применение газа позволяет избежать излишнего износа деталей, так как процессы сгорания топливовоздушной смеси происходят более правильно, благодаря исходному (газообразному) состоянию топлива. Также газовые двигатели более экономичны, так как газ стоит дешевле нефти и легче добывается.

К несомненным преимуществам двигателей на газе стоит отнести безопасность и бездымность выхлопа.

Сами по себе газовые двигатели редко выпускаются серийно, чаще всего они появляются после переделки традиционных ДВС, путем оборудования их специальным газовым оборудованием.

Дизельные двигатели

Специальное дизельное топливо впрыскивается в определенный момент (не доходя до верхней мертвой точки) в цилиндр под высоким давлением через форсунку. Горючая смесь образуется непосредственно в цилиндре по мере впрыска топлива. Движение поршня внутрь цилиндра вызывает нагрев и последующее воспламенение топливовоздушной смеси. Дизельные двигатели являются низкооборотными и характеризуются высоким вращающим моментом на валу двигателя. Дополнительным преимуществом дизельного двигателя является то, что, в отличие от двигателей с принудительным зажиганием, он не нуждается в электричестве для работы (в автомобильных дизельных двигателях электрическая система используется только для запуска), и, как следствие, менее боится воды.

По способу воспламенения:

От искры (бензиновые),

От сжатия (дизельные).

По числу и расположению цилиндров:

Рядные,

Оппозитные,

V - образные,

VR - образные,

W - образные.

Рядный двигатель


Этот двигатель известен с самого начала автомобильного двигателестроения. Цилиндры расположены в один ряд перпендикулярно коленчатому валу.

Достоинство: простота конструкции

Недостаток: при большом количестве цилиндров получается очень длинный агрегат, который невозможно расположить поперечно относительно продольной оси автомобиля.

Оппозитный двигатель


Горизонтально-оппозитные двигатели отличаются меньшей габаритной высотой, чем двигатели с рядным или V-образным расположением цилиндров, что позволяет снизить центр тяжести всего автомобиля. Легкий вес, компактность конструкции и симметричность компоновки уменьшает момент рыскания автомобиля.

V-образный двигатель


Чтобы уменьшить длину двигателей, в этом двигателе цилиндры расположены под углом от 60 до 120 градусов, при этом продольные оси цилиндров проходят через продольную ось коленчатого вала.

Достоинство: относительно короткий двигатель

Недостатки: двигатель относительно широк, имеет две раздельные головки блока, повышенная стоимость изготовления, слишком большой рабочий объем.

VR-двигатели


В поисках компромиссного решения исполнения двигателей для легковых автомобилях среднего класса пришли к созданию VR-двигателей. Шесть цилиндров под углом 150 градусов образуют относительно узкий и в целом короткий двигатель. Кроме того, такой двигатель имеет только одну головку блока.

W-двигатели


В двигателях W-семейства в одном двигателе соединены два ряда цилиндров в VR-исполнеии.

Цилиндры каждого ряда размещены под углом 150 один к другому, а сами ряды цилиндров расположены под углом 720.

Стандартный автомобильный двигатель состоит из двух механизмов и пяти систем.

Механизмы двигателя

Кривошипно-шатунный механизм,

Газораспределительный механизм.

Системы двигателя

Система охлаждения,

Система смазки,

Система питания,

Система зажигания,

Система выпуска отработавших газов.

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала двигателя.

Кривошипно-шатунный механизм состоит:

Блока цилиндров с картером,

Головки блока цилиндров,

Поддона картера двигателя,

Поршней с кольцами и пальцами,

Шатунов,

Коленчатого вала,

Маховика.

Блок цилиндров


Является цельнолитой деталью, объединяющей собой цилиндры двигателя. На блоке цилиндров имеются опорные поверхности для установки коленчатого вала, к верхней части блока, как правило, крепится головка блока цилиндров, нижняя часть является частью картера. Таким образом, блок цилиндров является основой двигателя, на которую навешиваются остальные детали.

Отливается как правило — из чугуна, реже — алюминия.

Блоки, изготовленные из этих материалов, отнюдь не равноценны по своим свойствам.

Так, чугунный блок наиболее жёсткий, а значит — при прочих равных выдерживает наиболее высокую степень форсировки и наименее чувствителен к перегреву. Теплоёмкость чугуна примерно вдвое ниже, чем алюминия, а значит двигатель с чугунным блоком быстрее прогревается до рабочей температуры. Однако, чугун весьма тяжёл (в 2,7 раза тяжелее алюминия), склонен к коррозии, а его теплопроводность примерно в 4 раза ниже, чем у алюминия, поэтому у двигателя с чугунным картером система охлаждения работает в более напряжённом режиме.

Алюминиевые блоки цилиндров лёгкие и лучше охлаждаются, однако в этом случае возникает проблема с материалом, из которого выполнены непосредственно стенки цилиндров. Если поршни двигателя с таким блоком сделать из чугуна или стали, то они очень быстро износят алюминиевые стенки цилиндров. Если же сделать поршни из мягкого алюминия, то они просто «схватятся» со стенками, и двигатель мгновенно заклинит.

Цилиндры в блоке цилиндров могут являться как частью отливки блока цилиндров, так и быть отдельными сменными втулками, которые могут быть «мокрыми» или «сухими». Помимо образующей части двигателя, блок цилиндров несет дополнительные функции, такие как основа системы смазки — по отверстиям в блоке цилиндров масло под давлением подается к местам смазки, а в двигателях жидкостного охлаждения основа системы охлаждения — по аналогичным отверстиям жидкость циркулирует по блоку цилиндров.

Стенки внутренней полости цилиндра служат также направляющими для поршня при его перемещениях между крайними поло-жениями. Поэтому длина образующих цилиндра предопределяется величиной хода поршня.

Цилиндр работает в условиях переменных давлений в надпорш-невой полости. Внутренние стенки его соприкасаются с пламенем и горячими газами, раскаленными до температуры 1500—2500°С. К тому же средняя скорость скольжения поршневого комплекта по стенкам цилиндра в автомобильных двигателях достигает 12— 15 м/сек при недостаточной смазке. Поэтому материал, употребляемый для изготовления цилиндров, должен обладать большой механической прочностью, а сама конструкция стенок повышенной жесткостью. Стенки цилиндров должны хорошо противостоять истиранию при ограниченной смазке и обладать общей высокой стойкостью против других возможных видов износа

В соответствии с этими требованиями в качестве основного материала для цилиндров применяют перлитный серый чугун с не-большими добавками легирующих элементов (никель, хром и др.). Применяют также высоколегированный чугун, сталь, магниевые и алюминие-вые сплавы.

Головка блока цилиндров


Является второй по значимости и по величине составной частью двигателя. В головке расположены камеры сгорания, клапаны и свечи цилиндров, в ней же на подшипниках вращается распределительный вал с кулачками. Так же, как и в блоке цилиндров, в его головке имеются водяные и масляные каналы и полости. Головка крепится к блоку цилиндров и, при работе двигателя, составляет с блоком единое целое.

Поддон картера двигателя


Закрывает снизу картер двигателя (отливается как единое целое с блоком цилиндров) и используется как резервуар для масла и защищает детали двигателя от загрязнения. В нижней части поддона имеется пробка для слива моторного масла. Поддон крепится к картеру болтами. Для предотвращения утечки масла между ними устанавливается прокладка.

Поршень

Поршень — деталь цилиндрической формы, совершающая возвратно поступательное движение внутри цилиндра и служащая для превращения изменения давления газа, пара или жидкости в механическую работу, или наоборот — возвратно-поступательного движения в изменение давления.

Поршень подразделяется на три части, выполняющие различные функции:

Днище,

Уплотняющая часть,

Направляющая часть (юбка).

Форма днища зависит от выполняемой поршнем функции. К примеру, в двигателях внутреннего сгорания форма зависит от расположения свечей, форсунок, клапанов, конструкции двигателя и других факторов. При вогнутой форме днища образуется наиболее рациональная камера сгорания, но в ней более интенсивно происходит отложение нагара. При выпуклой форме днища увеличивается прочность поршня, но ухудшается форма камеры сгорания.

Днище и уплотняющая часть образуют головку поршня. В уплотняющей части поршня располагаются компрессионные и маслосъёмные кольца.

Расстояние от днища поршня до канавки первого компрессионного кольца называют огневым поясом поршня. В зависимости от материала, из которого сделан поршень, огневой пояс имеет минимально допустимую высоту, уменьшение которой может привести к прогару поршня вдоль наружной стенки, а также разрушению посадочного места верхнего компрессионного кольца.

Функции уплотнения, выполняемые поршневой группой, имеют большое значение для нормальной работы поршневых двигателей. О техническом состоянии двигателя судят по уплотняющей способности поршневой группы. Например, в автомобильных двигателях не допускается, чтобы расход масла из-за угара его вследствие избыточного проникновения (подсоса) в камеру сгорания превышал 3% от расхода топлива.

Юбка поршня (тронк) является его направляющей частью при движении в цилиндре и имеет два прилива (бобышки) для установки поршневого пальца. Для снижения температурных напряжений поршня с двух сторон, где расположены бобышки, с поверхности юбки, удаляют металл на глубину 0,5-1,5 мм. Эти углубления, улучшающие смазывание поршня в цилиндре и препятствующие образованию задиров от температурных деформаций, называются «холодильниками». В нижней части юбки также может располагаться маслосъемное кольцо.



Для изготовления поршней применяются серые чугуны и алюминиевые сплавы.

Чугун

Достоинства: Поршни из чугуна прочны и износостойки.

Благодаря небольшому коэффициенту линейного расширения они могут работать с относительно малыми зазорами, обеспечивая хорошее уплотнение цилиндра.

Недостатки: Чугун имеет довольно большой удельный вес. В связи с этим область применения чугунных поршней ограничивается сравнительно тихоходными двигателями, в которых силы инерции возвратно движущихся масс не превосходят одной шестой от силы давления газов на днище поршня.

Чугун имеет низкую теплопроводность, поэтому нагрев днища у чугунных поршней достигает 350—400 °C. Такой нагрев нежелателен особенно в карбюраторных двигателях, так как он служит причиной возникновения калильного зажигания.

Алюминий

Подавляющее большинство современных автомобильных двигателей имеют алюминиевые поршни.

Достоинства:

Малая масса (как минимум на 30 % меньше по сравнению с чугунными);

Высокая теплопроводность (в 3-4 раза выше теплопроводности чугуна), обеспечивающая нагрев днища поршня не более 250 °C, что способствует лучшему наполнению цилиндров и позволяет повысить степень сжатия в бензиновых двигателях;

Хорошие антифрикционные свойства.

Шатун


Шатун — деталь, соединяющая поршень (посредством поршневого пальца ) и шатунную шейку коленчатого вала . Служит для передачи возвратно-поступательных движений от поршня на коленчатый вал. Для меньшего износа шатунных шеек коленчатого вала между ними и шатунами помещают специальные вкладыши, которые имеют антифрикционное покрытие .

Коленчатый вал


Коленчатый вал — детальсложной формы, имеющая шейки для крепления шатунов , от которых воспринимает усилия и преобразует их в крутящий момент .

Коленчатые валы изготовляют из углеродистых, хромомарганцевых, хромоникельмолибденовых, и других сталей, а также из специальных высокопрочных чугунов.

Основные элементы коленчатого вала

Коренная шейка — опора вала, лежащая в коренном подшипнике , размещённом в картере двигателя.

Шатунная шейка — опора, при помощи которой вал связывается с шатунами (для смазки шатунных подшипников имеются масляные каналы).

Щёки — связывают коренные и шатунные шейки.

Передняя выходная часть вала (носок) — часть вала, на которой крепится зубчатое колесо или шкив отбора мощности для привода газораспределительного механизма (ГРМ) и различных вспомогательных узлов, систем и агрегатов.

Задняя выходная часть вала (хвостовик) — часть вала, соединяющаяся с маховиком или массивной шестернёй отбора основной части мощности.

Противовесы — обеспечивают разгрузку коренных подшипников от центробежных сил инерции первого порядка неуравновешенных масс кривошипа и нижней части шатуна.

Маховик


Массивный диск с зубчатым венцом. Зубчатый венец необходим для запуска двигателя (шестерня стартера входит в зацепление с шестерней маховика и раскручивает вал двигателя). Также маховик служит для уменьшения неравномерности вращения коленчатого вала.

Газораспределительный механизм

Предназначен для своевременного впуска в цилиндры горючей смеси и выпуска отработавших газов.

Основными деталями газораспределительного механизма являются:

Распределительный вал,

Впускные и выпускные клапана.

Распределительный вал


По расположению распределительного вала выделяют двигатели:

С распредвалом, расположенным в блоке цилиндров (Cam-in-Block);

С распредвалом, расположенным в головке блока цилиндров (Cam-in-Head).

В современных автомобильных двигателях, как правило, расположен в верхней части головки блока цилиндров и соединён со шкивом или зубчатой звёздочкой коленвала ремнём или цепью ГРМ соответственно и вращается с вдвое меньшей частотой, чем последний (на 4-тактных двигателях).


Составной частью распредвала являются его кулачки , количество которых соответствует количеству впускных и выпускных клапанов двигателя. Таким образом, каждому клапану соответствует индивидуальный кулачок, который и открывает клапан, набегая на рычаг толкателя клапана. Когда кулачок «сбегает» с рычага, клапан закрывается под действием мощной возвратной пружины.

Двигатели с рядной конфигурацией цилиндров и одной парой клапанов на цилиндр обычно имеют один распределительный вал (в случае четырёх клапанов на каждый цилиндр, два), а V-образные и оппозитные — либо один в развале блока, либо два, по одному на каждый полублок (в каждой головке блока). Двигатели, имеющие 3 клапана на цилиндр (чаще всего два впускных и один выпускной), обычно имеют один распредвал на головку блока, а имеющие 4 клапана на цилиндр (два впускных и 2 выпускных) имеют 2 распредвала в каждой головке блока.

Современные двигатели иногда имеют системы регулировки фаз газораспределения, то есть механизмы, которые позволяют проворачивать распредвал относительно приводной звездочки, тем самым изменяя момент открытия и закрытия (фазу) клапанов, что позволяет более эффективно наполнять рабочей смесью цилиндры на разных оборотах.

Клапана


Клапан состоит из плоской головки и стержня, соединенных между собой плавным переходом. Для лучшего наполнения цилиндров горючей смесью диаметр головки впускного клапаны делают значительно больше, чем диаметр выпускного. Так как клапаны работают в условиях высоких температур, их изготавливают из высококачественных сталей. Впускные клапаны делают из хромистой стали, выпускные из жаростойкой, так как последние соприкасаются с горючими отработавшими газами и нагреваются до 600 - 800 0 С. Высокая температура нагрева клапанов вызывает необходимость установки в головке цилиндров специальных вставок из жаростойкого чугуна, которые называются седлами.

Принцип работы двигателя

Основные понятия

Верхняя мертвая точка - крайнее верхнее положение поршня в цилиндре.

Нижняя мертвая точка - крайнее нижнее положение поршня в цилиндре.

Ход поршня - расстояние, которое поршень проходит от одной мертвой точки до другой.

Камера сгорания - пространствомежду головкой блока цилиндров и поршнем при его нахождении в верхней мертвой точке.

Рабочий объем цилиндра - пространство, освобождаемое поршнем при его перемещении из верхней мертвой точки в нижнюю мертвую точку.

Рабочий объем двигателя - сумма рабочих объемов всех цилиндров двигателя. Выражается в литрах, поэтому часто называется литражом двигателя.

Полный объем цилиндра - сумма объема камеры сгорания и рабочего объема цилиндра.

Степень сжатия - показывает во сколько раз полный объем цилиндра больше объема камеры сгорания.

Компрессия -давление в цилиндре в конце такта сжатия.

Такт - процесс (часть рабочего цикла), который происходит в цилиндре за один ход поршня.

Рабочий цикл двигателя

1-ый такт - впуск . При движении поршня вниз в цилиндре образуется разрежение, под действием которого через открытый впускной клапан в цилиндр поступает горючая смесь (смесь топлива с воздухом).

2-ой такт - сжатие . Поршень под действием коленчатого вала и шатуна перемещается вверх. Оба клапана закрыты и горючая смесь сжимается.

3-ий такт - рабочий ход . В конце такта сжатия горючая смесь воспламеняется (от сжатия в дизельном двигателе, от искры свечи в бензиновом двигателе). Под давлением расширяющихся газов поршень перемещается вниз и через шатун приводит во вращение коленчатый вал.

4-ый такт - выпуск . Поршень перемещается вверх, и через открывшийся выпускной клапан выходят наружу отработавшие газы.

На современных тракторах и автомобилях в основном применяют поршневые двигатели внутреннего сгорания. Внутри этих двигателей сгорает горючая смесь (смесь топлива с воздухом в определенных соотношениях и количествах). Часть выделяющейся при этом теплоты преобразуется в механическую работу.

Классификация двигателей

Поршневые двигатели классифицируют по следующим признакам:

  • по способу воспламенения горючей смеси — от сжатия (дизели) и от электрической искры
  • по способу смесеобразования — с внешним (карбюраторные и газовые) и внутренним (дизели) смесеобразованием
  • по способу осуществления рабочего цикла — четырех- и двухтактные;
  • по виду применяемого топлива — работающие на жидком (бензин или дизельное топливо), газообразном (сжатый или сжиженный газ) топливе и мно­готопливные
  • по числу цилиндров — одно- и многоцилиндровые (двух-, трех-, четырех-, шестицилиндровые и т.д.)
  • по расположению цилиндров — однорядные, или линейные (цилиндры расположены в один ряд), и двухрядные, или V-образные (один ряд цилиндров размещен под углом к другому)

На тракторах и автомобилях большой грузоподъемности применяют четырехтактные многоцилиндровые дизели, на автомобилях легковых, малой и средней грузоподъемности — четырехтактные многоцилиндровые карбюра­торные и дизельные двигатели, а также двигатели, работающие на сжатом и сжиженном газе.

Основные механизмы и системы двигателя

Поршневой двигатель внутреннего сгорания состоит из:

  • корпусных деталей
  • кривошипно-шатунного механизма
  • газораспределительного механизма
  • системы питания
  • системы охлаждения
  • смазочной системы
  • системы зажигания и пуска
  • регулятора частоты вращения

Устройство четырехтактного одноцилиндрового карбюраторного двигателя показано на рисунке:

Рисунок. Устройство одноцилиндрового четырехтактного карбюра­торного двигателя:
1 — шестерни приводи распределительного вала; 2 — распределительный вал; 3 — толкатель; 4 — пружина; 5 — выпускная труба; 6 — впускная труба; 7 — карбюратор; 8 — выпускной кла­пан; 9 — провод к свече; 10 — искровая зажигательная свеча; 11 — впускной клапан; 12 — го­ловка цилиндра; 13 — цилиндр: 14 — водяная рубашка; 15 — поршень; 16 — поршневой палец; 17 — шатун; 18 — маховик; 19 — коленчатый вал; 20 — резервуар для масла (поддон картера).

Кривошипно-шатунный механизм (КШМ) преобразует прямолинейное возвратно-поступательное движение поршня во вращательное движение ко­ленчатого вала и наоборот.

Механизм газораспределения (ГРМ) предназначен для своевременного соединения надпоршневого объема с системой впуска свежего заряда и вы­пуска из цилиндра продуктов сгорания (отработавших газов) в определенные промежутки времени.

Система питания служит для приготовления горючей смеси и подвода ее к цилиндру (в карбюраторном и газовом двигателях) или наполнения ци­линдра воздухом и подачи в него топлива под высоким давлением (в дизеле). Кроме того, эта система отводит наружу выхлопные газы.

Система охлаждения необходима для поддержания оптимального теп­лового режима двигателя. Вещество, отводящее от деталей двигателя избы­ток теплоты, — теплоноситель может быть жидкостью или воздухом.

Смазочная система предназначена для подвода смазочного материала (моторного масла) к поверхностям трения с целью их разделения, охлажде­ния, защиты от коррозии и вымывания продуктов изнашивания.

Система зажигания служит для своевременного зажигания рабочей смеси электрической искрой в цилиндрах карбюраторного и газового двига­телей.

Система пуска — это комплекс взаимодействующих механизмов и сис­тем, обеспечивающих устойчивое начало протекания рабочего цикла в ци­линдрах двигателя.

Регулятор частоты вращения — это автоматически действующий меха­низм, предназначенный для изменения подачи топлива или горючей смеси в зависимости от нагрузки двигателя.

У дизеля в отличие от карбюраторного и газового двигателей нет сис­темы зажигания и в системе питания вместо карбюратора или смесителя ус­тановлена топливная аппаратура (топливный насос высокого давления, топ­ливопроводы высокого давления и форсунки).

На наших дорогах чаще всего можно встретить автомобили, потребляющие бензин и дизельной топливо. Время электрокаров пока не настало. Поэтому рассмотрим принцип работы двигателя внутреннего сгорания (ДВС). Отличительной чертой его является превращение энергии взрыва в механическую энергию.

При работе с бензиновыми силовыми установками различают несколько способов формирования топливной смеси. В одном случае это происходит в карбюраторе, а потом это все подается в цилиндры двигателя. В другом случае бензин через специальные форсунки (инжекторы) впрыскивается непосредственно в коллектор или камеру сгорания.

Для полного понимания работы ДВС необходимо знать, что существует несколько типов современных моторов, доказавших свою эффективность в работе:

  • бензиновые моторы;
  • двигатели, потребляющие дизельное топливо;
  • газовые установки;
  • газодизельные устройства;
  • роторные варианты.

Принцип работы ДВС этих типов практически одинаковый.

Такты ДВС

В каждом есть топливо, которое взрываясь в камере сгорания, расширяется и толкает поршень, установленный на коленчатом валу. Далее это вращение посредством дополнительных механизмов и узлов передается на колеса автомобиля.

В качестве примера будем рассматривать бензиновый четырехтактный мотор, так как именно он является самым распространенным вариантом силовой установки в машинах на наших дорогах.

Такты :

  1. открывается впускное отверстие и происходит заполнение камеры сгорания подготовленной топливной смесью
  2. происходит герметизация камеры и уменьшение ее объема в такте сжатия
  3. взрывается смесь и выталкивает поршень, который получает импульс механической энергии
  4. камера сгорания освобождается от продуктов горения

В каждом из этих этапов работы ДВС заложена своя происходит несколько одновременных процессов. В первом случае поршень находится в самой нижней своей позиции, при этом открыты все клапаны, впускающие топливо. Следующий этап начинается с полного закрытия всех отверстий и перемещения поршня в максимальную верхнюю позицию. При этом все сжимается.

Достигнув снова крайней верхней позиции поршня, на свечу поступает напряжение, и она создает искру, зажигая смесь для взрыва. Сила этого взрыва толкает поршень вниз, а в это время открываются выпускные отверстия и камера очищается от остатков газа. Затем все повторяется.

Работа карбюратора

Формирование топливной смеси в машинах первой половины прошлого века происходило с помощью карбюратора. Чтобы понять, как работает двигатель внутреннего сгорания, нужно знать, что автомобильные инженеры сконструировали топливную систему так, что в камеру сгорания подавалась уже подготовленная смесь.

Устройство карбюратора

Ее формированием занимался карбюратор. Он в нужных соотношениях перемешивал бензин и воздух и отправлял это все в цилиндры. Такая относительная простота конструкции системы позволяла ему долгое время оставаться незаменимой частью бензиновых агрегатов. Но позже его недостатки стали преобладать над достоинствами и не обеспечивать повышающихся требований к автомобилям в целом.

Недостатки карбюраторных систем:

  • нет возможности обеспечивать экономные режимы при внезапных переменах режимов езды;
  • превышение лимитов вредных веществ в выхлопных газах;
  • низкая мощность автомобилей из-за несоответствия подготовленной смеси состоянию автомобиля.

Компенсировать эти недостатки попытались прямой подачей бензина через инжекторы.

Работа инжекторных моторов

Принцип работы инжекторного двигателя заключается в непосредственном впрыске бензина во впускной коллектор или камеру сгорания. Визуально все схоже с работой дизельной установки, когда подача выполняется дозировано и только в цилиндр. Разница лишь в том, что у инжекторных агрегатов установлены свечи для поджигания.

Конструкция инжектора

Этапы работы бензиновых моторов с прямым впрыском не отличаются от карбюраторного варианта. Разница лишь в месте формирования смеси.

За счет этого варианта конструкции обеспечиваются достоинства таких двигателей:

  • увеличение мощности до 10% при схожих технических характеристиках с карбюраторным;
  • заметная экономия бензина;
  • улучшение экологических характеристик по выбросам.

Но при таких достоинствах есть и недостатки. Основными являются обслуживание, ремонтопригодность и настройка. В отличие от карбюраторов, которые можно самостоятельно разобрать, собрать и отрегулировать, инжекторы требуют специального дорогостоящего оборудования и установленного большого числа разных датчиков в автомобиле.

Способы впрыска топлива

В ходе эволюции подачи топлива в двигатель происходило постоянное сближение этого процесса с камерой сгорания. В наиболее современных ДВС произошло слияние точки подачи бензина и места сгорания. Теперь смесь формируется уже не в карбюраторе или впускном коллекторе, а впрыскивается в камеру напрямую. Рассмотрим все варианты инжекторных устройств.

Одноточечный вариант впрыска

Наиболее простой вариант конструкции выглядит как впрыск топлива через одну форсунку во впускной коллектор. Разница с карбюратором в том, что последний подает готовую смесь. В инжекторном варианте проходит подача топлива через форсунку. Выгода заключается в получении экономии при расходе.

Моноточечный вариант подачи топлива

Такой способ также формирует смесь вне камеры, но здесь задействованы датчики, которые обеспечивают подачу непосредственно к каждому цилиндру через впускной коллектор. Это более экономичный вариант использования топлива.

Прямой впрыск в камеру

Этот вариант пока наиболее эффективно использует возможности инжекторной конструкции. Топливо напрямую распыляется в камере. За счет этого снижается уровень вредных выхлопов, и автомобиль получает кроме большей экономии бензина увеличенную мощность.

Увеличенная степень надежности системы снижает негативный фактор, касающийся обслуживания. Но такие устройства нуждаются в качественном топливе.

Двигатель автомобиля может выглядеть как большая запутанная мешанина металлических частей, трубок и проводов для непосвященных. В то же время двигатель - это "сердце" почти любого автомобиля - 95% всех машин работают на двигателе внутреннего сгорания.

В этой статье мы обсудим работу двигателя внутреннего сгорания: его общий принцип, изучим конкретные элементы и фазы работы двигателя, узнаем, как именно потенциальная топлива преобразуется во вращательную силу, и постараемся ответить на следующие вопросы: как работает двигатель внутреннего сгорания, какие бывают двигатели и их типы и что означают те или иные параметры и характеристики двигателя? И, как всегда, всё это просто и доступно, как дважды два.

Главная цель бензинового двигателя автомобиля заключается в преобразовании бензина в движение, чтобы Ваш автомобиль мог двигаться. В настоящее время самый простой способ создать движение от бензина - это попросту сжечь его внутри двигателя. Таким образом, автомобильный "движок" является двигателем внутреннего сгорания - т.е. сгорание бензина происходит внутри него.

Существуют различные виды двигателей внутреннего сгорания. Дизельные двигатели являются одной из форм, а газотурбинные - совсем другой. Каждый из них имеет свои преимущества и недостатки.

Ну, как Вы заметите, раз существует двигатель внутреннего сгорания, то должен существовать и двигатель внешнего сгорания. Паровой двигатель в старомодных поездах и пароходах как раз таки и является лучшим примером двигателя внешнего сгорания. Топливо (уголь, дерево, масло, любое другое) в паровой машине горит вне двигателя для создания пара, и пар создаёт движение внутри двигателя. Разумеется, двигатель внутреннего сгорания является намного более эффективным (как минимум потребляет гораздо меньше топлива на километр пути автомобиля), чем внешнего сгорания, кроме того, двигатель внутреннего сгорания намного меньше по размерам, чем эквивалентный по мощности двигатель внешнего сгорания. Это объясняет, почему мы не видим ни одного автомобиля, похожего на паровоз.

А теперь давайте посмотрим более подробно, как же работает двигатель внутреннего сгорания.

Давайте рассмотрим принцип, лежащий в любом возвратно-поступательном движении двигателя внутреннего сгорания: если Вы поместите небольшое количество высокоэнергичного топлива (например, бензина) в небольшое закрытое пространство и зажжёте его (это топливо), то выделится невероятное количество энергии в виде расширяющегося газа. Вы можете использовать эту энергию, к примеру, для приведения в движение картофелины. В этом случае энергия преобразуется в движение этой картофелины. Например, если Вы в трубу, у которой один конец плотно закрыт, а другой - открыт, нальёте немного бензина, а затем засунете картофелину и подожжёте бензин, то его взрыв спровоцирует приведение в движение этой картофелины за счёт выдавливания её взрывающимся бензином, таким образом, картофелина подлетит высоко в небо, если Вы направите трубу вверх. Это мы кратко описали принцип действия старинной пушки. Но Вы также можете использовать такую энергию бензина в более интересных целях. Например, если Вы можете создать цикл взрывов бензина в сотни раз в минуту, и если Вы сможете использовать эту энергию в полезных целях, то знайте, что у Вас уже есть ядро ​​для двигателя автомобиля!

Почти все автомобили в настоящее время используют то, что называется четырёхтактным циклом сгорания для преобразования бензина в движение. Четырёхтактный цикл также известен как цикл Отто - в честь Николая Отто, который изобрел его в 1867 году. Итак, вот они, эти 4 такта работы двигателя:

  1. Такт впуска топлива
  2. Такт сжатия топлива
  3. Такт сгорания топлива
  4. Такт выпуска отработавших газов

Вроде бы уже всё понятно из этого, не так ли? Вы можете посмотреть ниже на рисунке, что элемент, который называется поршень, заменяет картошку в описанной нами ранее "картофельной пушке". Поршень соединен с коленчатым валом с помощью шатуна. Только не пугайтесь новых терминов - их, на самом деле не так много в принципе работы двигателя!

На рисунке буквами обозначены следующие элементы двигателя:

A - Распределительный вал
B - Крышка клапанов
C - Выпускной клапан
D - Выхлопное отверстие
E - Головка цилиндра
F - Полость для охлаждающей жидкости
G - Блок двигателя
H - Маслосборник
I - Поддон двигателя
J - Свеча зажигания
K - Впускной клапан
L - Впускное отверстие
M - Поршень
N - Шатун
O - Подшипник шатуна
P - Коленчатый вал

Вот что происходит, когда двигатель проходит свой ​​полный четырёхтактный цикл:

  1. Начальное положение поршня - в самом верху, в этот момент открывается впускной клапан, и поршень движется вниз, таким образом, засасывая в цилиндр приготовленную смесь бензина и воздуха. Это такт впуска. Всего лишь крошечная капля бензина должна смешаться с воздухом, чтобы всё это работало.
  2. Когда поршень достигает своей нижней точки, то впускной клапан закрывается, а поршень начинает перемещаться обратно вверх (бензин оказывается в "западне"), сжимая эту смесь из топлива и воздуха. Сжатие впоследствии сделает взрыв мощнее.
  3. Когда поршень достигает верхней точки своего хода, свеча зажигания испускает искру, порождённую напряжением более десятка тысяч Вольт, чтобы зажечь бензин. Происходит детонация, и бензин в цилиндре взрывается, с невероятной силой толкая поршень вниз.
  4. После того, как поршень снова достигает дна своего хода, настаёт очередь открываться выпускному клапану. Затем поршень движется вверх (это происходит уже по инерции) и отработавшая смесь бензина и воздуха выходит через выхлопное отверстие из цилиндра, чтобы отправиться в своё путешествие до выхлопной трубы и далее в верхние слои атмосферы.

Теперь, когда клапан снова в самом верху, двигатель готов к следующему циклу, так что он всасывает следующую порцию смеси воздуха и бензина, чтобы ещё сильнее раскрутить коленчатый вал, который, собственно и передаёт своё кручение далее через трансмиссию к колёсам. Теперь посмотрите ниже, как работает двигатель во всех своих четырёх тактах.

Более наглядно работу двигателя внутреннего сгорания Вы можете увидеть на двух анимациях ниже:

Как работает двигатель - анимация

Обратите внимание, что движение, которое создаётся работой двигателя внутреннего сгорания, является вращением, в то время как движение, создаваемое "картофельной пушкой", является линейным (прямым). В двигателе линейное движение поршней преобразуется во вращательное движение коленчатого вала. Вращательное движение нам нужно, потому что мы планируем повернуть наши колёса автомобиля.

Теперь давайте посмотрим на все части, которые работают вместе в дружной команде, чтобы это произошло, начиная с цилиндров!

Ядром двигателя является цилиндр с поршнем, который двигается вверх и вниз внутри цилиндра. Двигатель, описанный выше, имеет один цилиндр. Казалось бы, что ещё нужно для автомобиля?! А вот и нет, автомобилю для комфортной езды на нём нужны по меньшей мере ещё 3 таких цилиндра с поршнями и всеми необходимыми этой парочке атрибутами (клапанами, шатунами и так далее), а вот один цилиндр подойдёт разве что для большинства газонокосилок. Посмотрите - ниже на анимации Вы увидите работу 4-хцилиндрового двигателя:

Типы двигателей

Автомобили чаще всего имеют четыре, шесть, восемь и даже десять, двенадцать и шестнадцать цилиндров (последние три варианта устанавливают, в основном на спортивные автомобили и болиды). В многоцилиндровом двигателе все цилиндры, как правило, расположены одним из трёх способов:

  • Рядный
  • V-образный
  • Оппозитный

Вот они - все три типа расположения цилиндров в двигателе:

Рядное расположение 4-х цилиндров

Оппозитное расположение 4-х цилиндров

V-образное расположение 6 цилиндров

Различные конфигурации имеют разные преимущества и недостатки с точки зрения вибрации, стоимости производства и характеристик формы. Эти преимущества и недостатки делают их более подходящими для использования некоторых конкретных транспортных средств. Так, 4-хцилиндровые двигатели редко имеет смысл делать V-образными, таким образом, они обычно рядные; а 8-цилиндровые двигатели делают чаще с V-образным расположением цилиндров.

Теперь давайте наглядно посмотрим, как работает система впрыска топлива, масло и другие узлы в двигателе:

Давайте рассмотрим некоторые ключевые детали двигателя более подробно:

А теперь внимание! На основе всего прочитанного посмотрим на полный цикл работы двигателя со всеми его элементами:

Полный цикл работы двигателя

Почему двигатель не работает?

Допустим, Вы выходите утром к машине и начинаете её заводить, но она не заводится . Что может быть не так? Теперь, когда Вы знаете, как работает двигатель, можно понять основные вещи, которые могут помешать двигателю завестись. Три фундаментальные вещи могут случиться:

Да, есть ещё тысячи незначительных вещей, которые могут создать проблемы, но указанная "большая тройка" является чаще всего следствием или причиной одной из них. На основе простого представления о работе двигателя мы можем составить краткий список того, как эти проблемы влияют на двигатель.

Плохая топливная смесь может быть следствием одной из причин:

  • У Вас попросту закончился в баке бензин, и двигатель пытается завестись от воздуха.
  • Воздухозаборник может быть забит, поэтому в двигатель поступает топливо, но ему не хватает воздуха, чтобы сдетонировать.
  • Топливная система может поставлять слишком много или слишком мало топлива в смесь, а это означает, что горение не происходит должным образом.
  • В топливе могут быть примеси (а для российского качества бензина это особенно актуально), которые мешают топливу полноценно гореть.

Отсутствие сжатия - если заряд воздуха и топлива не могут быть сжаты должным образом, процесс сгорания не будет работать как следует. Отсутствие сжатия может происходить по следующим причинам:

  • Поршневые кольца изношены (позволяя воздуху и топливу течь мимо поршня при сжатии)
  • Впускные или выпускные клапаны не герметизируются должным образом, снова открывая течь во время сжатия
  • Появилось отверстие в цилиндре.

Отсутствие искры может быть по ряду причин:

  • Если свечи зажигания или провод, идущий к ним, изношены, искра будет слабой.
  • Если провод повредился или попросту отсутствует или если система, которая посылает искру по проводу, не работает должным образом.
  • Если искра происходит либо слишком рано или слишком поздно в цикле, топливо не будет зажжено в нужное время, и это может вызвать всевозможные проблемы.

И вот ещё ряд причин, по которым двигатель может не работать, и здесь мы затронем некоторые детали за пределами двигателя:

  • Если аккумулятор мёртв, Вы не сможете прокрутить двигатель, чтобы запустить его.
  • Если подшипники, которые позволяют коленчатому валу свободно вращаться, изношены, коленчатый вал не сможет провернуться, поэтому двигатель не сможет работать.
  • Если клапаны не открываются и не закрываются в нужное время или не работают вообще, воздух не сможет войти, а выхлопы - выйти, поэтому двигатель опять-таки не сможет работать.
  • Если кто-то из хулиганских побуждений засунул картошку в выхлопную трубу, выпускные газы не смогут выйти из цилиндра, и двигатель снова не будет работать.
  • Если в двигателе недостаточно масла, то поршень не сможет двигаться вверх и вниз свободно в цилиндре, что затруднит или сделает невозможным нормальную работу двигателя.

В правильно работающем двигателе все эти факторы находятся в пределах допуска. Как Вы можете видеть, двигатель имеет ряд систем, которые помогают ему сделать свою работу преобразования топлива в движение безупречной. Мы же рассмотрим различные подсистемы, используемые в двигателях, в следующих разделах.

Большинство подсистем двигателя может быть реализована с использованием различных технологий, и лучшие технологии могут значительно повысить производительность двигателя. Вот почему развитие автомобилестроения продолжается высочайшими темпами, ведь конкуренция среди автоконцернов достаточно велика, чтобы вкладывать большие деньги в каждую дополнительно выжатую лошадиную силу из двигателя при том же объёме. Давайте посмотрим на различные подсистемы, используемые в современных двигателях, начиная с работы клапанов в двигателе.

Как работают клапаны?

Система клапанов состоит из, собственно, клапанов и механизма, который открывает и закрывает их. Система открытия и закрытия их называется распределительным валом . Распределительный вал имеет специальные детали на своей оси, которые движут клапаны вверх и вниз, как показано на рисунке ниже.

Большинство современных двигателей имеют то, что называют накладными кулачками . Это означает, что вал расположен над клапанами, как Вы видите на рисунке. Старые двигатели используют распределительный вал, расположенный в картере возле коленчатого вала. Распределительный вал, крутясь, двигает кулачок выступом вниз таким образом, чтобы он продавливал клапан вниз, создавая зазор для прохода топлива или выпуска отработавших газов. Ремень ГРМ или цепной привод приводится в движение коленчатым валом и передаёт кручение от него к распределительному валу так, что клапаны находятся в синхронизации с поршнями. Распределительный вал всегда крутится в один-два раза медленнее коленчатого вала. Многие высокопроизводительные двигатели имеют четыре клапана на цилиндр (два для приёма топлива внутрь и два для вытяжки отработавшей смеси).

Как работает система зажигания?

Система зажигания производит заряд высокого напряжения и передаёт его к свечам зажигания с помощью проводов зажигания. Заряд сначала проходит к катушке зажигания (эдакому дистрибьютору, который распределяет подачу искры по цилиндрам в определённое время), которую Вы можете легко найти под капотом большинства автомобилей. Катушка зажигания имеет один провод, идущий в центре и четыре, шесть, восемь проводов или больше в зависимости от количества цилиндров, которые выходят из него. Эти провода зажигания отправляют заряд к каждой свече зажигания. Двигатель получает такую искру по времени таким образом, что только один цилиндр получает искру от распределителя в один момент времени. Такой подход обеспечивает максимальную гладкость работы двигателя.

Как работает охлаждение?

Система охлаждения в большинстве автомобилей состоит из радиатора и водяного насоса. Вода циркулирует через проходы (каналы) вокруг цилиндров, а затем проходит через радиатор, чтобы тот её максимально охладил. Однако, существуют такие модели автомобилей (в первую очередь Volkswagen Beetle (Жук)), а также большинство мотоциклов и газонокосилок, которые имеют двигатель с воздушным охлаждением. Вы вероятно, видел такие двигатели с воздушным охлаждением, сбоку которых расположены эдакие плавники - ребристая поверхность, украшающие снаружи каждый цилиндр, чтобы помочь рассеять тепло.

Воздушное охлаждение делает двигатель легче, но горячее, и как правило, уменьшается срок службы двигателя и общая производительность. Так что теперь Вы знаете, как и почему Ваш двигатель остаётся не перегретым.

Как работает пусковая система?

Повышение производительности Вашего двигателя является большим делом, но важнее то, что именно происходит, когда Вы поворачиваете ключ, чтобы запустить его ! Пусковая система состоит из стартера с электродвигателем. Когда Вы поворачиваете ключ зажигания, стартер крутит двигатель на несколько оборотов, чтобы процесс горения начал свою работу, и остановить его смог только поворот ключа в обратную сторону, когда перестаёт подаваться искра в цилиндры, и двигатель, таким образом, глохнет.

Стартер же имеет мощный электродвигатель, который вращает холодный двигатель внутреннего сгорания. Стартер - это всегда довольно мощный и, следовательно, "кушающий" ресурсы аккумулятора двигатель, ведь должен преодолеть:

  • Всё внутреннее трение, вызванное поршневыми кольцами и усугубляющееся холодным непрогретым маслом.
  • Давление сжатия любого цилиндра (цилиндров), которое происходит в процессе такта сжатия.
  • Сопротивление, оказываемое открытием и закрытием клапанов распределительным валом.
  • Все иные процессы, непосредственно связанные с двигателем, в том числе сопротивление водяного насоса, масляного насоса, генератора и т.д.

Мы видим, что стартеру необходимо очень много энергии. Автомобиль чаще всего использует 12-вольтовую электрическую систему, и сотни ампер электричества должны поступать в стартер.

Как работает впрыск и смазочная система?

Когда дело доходит ежедневного обслуживания автомобиля, Ваша первая забота, вероятно, состоит в проверке количества бензина в Вашем автомобиле. А как бензин попадает из топливного бака в цилиндры? Топливная система двигателя высасывает бензин из бака с помощью топливного насоса, который находится в баке, и смешивает его с воздухом так, чтобы надлежащая смесь воздуха и топлива могла протекать в цилиндры. Топливо поставляется в одном из трёх распространённых способов: карбюратор, впрыск топлива и система непосредственного впрыска топлива.

Карбюраторы на сегодняшний день сильно устарели, и их не помещают в новые модели автомобилей. В инжекторном двигателе нужное количество топлива впрыскивается индивидуально в каждый цилиндр либо прямо в впускной клапан (впрыск топлива) или непосредственно в цилиндр (непосредственный впрыск топлива).

Масло также играет важную роль. Идеально и правильно смазанная система гарантирует, что каждая подвижная часть в двигателе получает масло так, что она может легко перемещаться. Две главные части, нуждающиеся в масле - это поршень (а, точнее, его кольца) и любые подшипники, которые позволяют таким элементам, как коленчатый и другие валы, свободно вращаться. В большинстве автомобилей масло всасывается из масляного поддона масляным насосом, проходит через масляный фильтр для удаления частиц грязи, а затем брызгается под высоким давлением на подшипники и стенки цилиндра. Затем масло стекает в отстойник, где снова собирается, и цикл повторяется.

Система выпуска отработавших газов

Теперь, когда мы знаем о ряде вещей, которые мы положили (налили) в свой ​​автомобиль, давайте посмотрим на другие вещи, которые выходят из него. Система выпуска включает в себя выхлопную трубу и глушитель. Без глушителя Вы бы услышали звук тысяч маленьких взрывов из своей ​​выхлопной трубы. Глушитель гасит звук. Выхлопная система также включает в себя каталитический нейтрализатор, который использует катализатор и кислород, чтобы сжечь всё неиспользованное топливо и некоторые другие химические веществ в выхлопных газах. Таким образом, Ваш автомобиль соответствует определённым евростандартам по уровню загрязнения воздуха.

Что ещё есть, кроме всего вышеперечисленного в автомобиле? Электрическая система состоит из аккумулятора и генератора . Генератор подключен к двигателю ремнём и вырабатывает электроэнергию для зарядки аккумулятора. Аккумулятор выдаёт 12-вольтовый заряд электрической энергии, доступной ко всему в машине, нуждающемуся в электроэнергии (системе зажигания, магнитоле,

Похожие статьи