Что такое форсунка в автомобиле? Что такое топливная форсунка Как устроены форсунки.

Неисправности инжектора (форсунок) встречаются как на , так и на двигателях. В схеме устройства системы питания инжекторного двигателя форсунка является элементом, который отвечает за впрыск распыленной порции топлива в камеру сгорания под определенным давлением.

Точное дозирование, герметичность и своевременное срабатывание инжекторной форсунки обеспечивают устойчивую и исправную работу двигателя на всех режимах его работы. Если форсунка «льет» (пропускает лишнее топливо в момент, когда его подача не требуется), снижается эффективность распыла горючего (нарушается форма факела) и возникают другие неисправности инжектора, тогда , теряет мощность, расходует много топлива и т.п.

Читайте в этой статье

Что указывает на возможные проблемы с инжектором

Сразу отметим, что причин нестабильной работы двигателя может быть много, начиная от забитого , поломки , вышедшей из строя свечи зажигания или неисправной катушки до , проблем с и т.д. Наряду с этим одним из главных признаков неисправности форсунок является , а также расход бензина или солярки (зависимо от типа двигателя), который заметно увеличивается. Еще необходимо отметить неустойчивую работу ДВС в режиме холостого хода, похожую на так называемое «троение» двигателя.

При езде возможно достаточно частое проявление одного или сразу нескольких симптомов:

  • наличие рывков, сильно замедленны реакции при нажатии на педаль газа;
  • явные провалы и потеря динамики при попытках резкого ускорения;
  • машина может дергаться на ходу, при сбросе газа, а также после смены режима нагрузки на мотор;

Необходимо добавить, что подобную неисправность необходимо устранять безотлагательно, так как проблемы с инжектором негативно сказываются не только на ресурсе двигателя и трансмиссии, но и на общей безопасности движения. На автомобиле с неисправными форсунками водитель может испытать серьезные трудности при обгоне, на крутых подъемах и т.п.

Самостоятельная проверка форсунок

Начнем с того, что автомобильные форсунки делятся на несколько типов, из которых в разное время широкое применение нашли два вида: механические форсунки и электромагнитные (электромеханические) инжекторы.

Электромагнитные форсунки имеют в основе специальный клапан, который осуществляет открытие и закрытие форсунки для подачи топлива под воздействием управляющего импульса двигателем. Механические форсунки открываются в результате роста давления топлива в форсунке. Добавим, что на современных авто зачастую устанавливаются электромагнитные устройства.

Чтобы проверить форсунки своими руками без снятия с машины можно воспользоваться несколькими способами. Наиболее простым и доступным способом, который позволяет быстро проверить инжекторные форсунки не снимая их с машины, является анализ шумов, издаваемых двигателем в процессе работы.

Определить неисправную форсунку на слух по звуку работы ДВС можно в том случае, если из блока цилиндров доносится приглушенный высокочастотный звук. Это указывает на необходимость чистки инжектора или неисправность форсунок.

Как проверить подачу питания на форсунки

Указанную проверку производят в том случае, если сами форсунки исправны, но какой-либо из инжекторов не работает при включении зажигания.

  • для диагностики от инжектора отключается колодка, после чего к нужно подключить два провода;
  • другие концы проводов крепятся к контактам форсунки;
  • затем нужно включить зажигание и зафиксировать наличие или отсутствие вытекания топлива;
  • если горючее течет, тогда данный признак указывает на проблемы в электрической цепи;

Еще одним из диагностических приемов является проверка инжектора при помощи мультиметра. Данный способ позволяет измерить сопротивление на форсунках не снимая их с двигателя.

  1. Перед началом работ необходимо выяснить, какой импеданс (сопротивление) имеют форсунки, установленные на конкретном автомобиле. Дело в том, что встречаются инжекторные форсунки как с высоким, так и с низким сопротивлением.
  2. Следующим шагом станет выключение зажигание, а также сбрасывание минусовой клеммы с АКБ.
  3. Далее потребуется отключить электрический разъем на форсунке. Для этого необходимо использовать отвертку с тонким концом, при помощи которой нужно отщелкнуть специальный зажим, расположенный на колодке.
  4. После отсоединения разъема переводим мультиметр в нужный режим работы для замера сопротивления (омметр), подключаем контакты мультиметра к соответствующим контактам форсунки для измерения импеданса.
  5. Сопротивление между крайним и центральным контактом форсунки с высоким импедансом должно быть в рамках от 11-12 до 15-17 Ом. Если на автомобиле применяются форсунки с низким сопротивлением, тогда показатель должен быть от 2 до 5 Ом.

Если замечены явные отклонения от допустимых норм, тогда форсунку нужно демонтировать с двигателя для подробной диагностики. Также возможна замена форсунки на заведомо исправную, после чего оценивается работа двигателя.

Комплексная диагностика работы форсунок на рампе

Для такой проверки топливную рейку понадобится снять с мотора вместе с закрепленными на ней форсунками. После этого нужно присоединить все электрические контакты к рампе и форсункам в том случае, если таковые отключались перед снятием. Также необходимо вернуть на место минусовую клемму АКБ.

  1. Рампу необходимо разместить в подкапотном пространстве так, чтобы получилось поставить под каждой из форсунок мерную емкость с нанесенной шкалой.
  2. Нужно подключить к рампе трубки подачи топлива и дополнительно проверить надежность их крепления.
  3. Следующим шагом является включение зажигания, после чего необходимо немного провернуть двигатель стартером. Данную операцию лучше проводить с помощником.
  4. Пока помощник вращает двигатель, проконтролируйте эффективность работы всех инжекторов. Подача горючего должна быть одинаковой на всех форсунках.
  5. Завершающим этапом станет выключение зажигания и проверка уровня топлива в емкостях. Указанный уровень должен быть равнозначным в каждой емкости.

Большее или меньшее количество горючего в мерных емкостях укажет на неисправность форсунки или необходимость очистки одного или нескольких инжекторов. Если форсунка демонстрирует недолив, тогда элемент нужно чистить или менять. Подтекание топлива после отключения зажигания укажет на то, что форсунка «льет» и потеряла герметичность.

Кроме самостоятельной проверки можно воспользоваться услугой диагностики инжектора в автосервисе. Данную операцию совершают на специальном проверочном стенде. Проверка форсунки на стенде позволяет точно определить не только эффективность подачи горючего, но и форму факела во время распыла топлива.

Как самому очистить форсунки без снятия с двигателя

В процессе диагностики частой причиной неустойчивой работы мотора является то, что инжекторные форсунки забились. Существует несколько способов очистки форсунок, среди которых может использоваться механический, ультразвуковой или очистка при помощи специальных химических составов.

В ряде случаев заливка в топливный бак специальной присадки-очистителя инжектора достаточно для того, чтобы нормализовать работу всей системы. Также рекомендуется с определенной периодичностью раскручивать мотор до высоких оборотов и разгонять автомобиль до 110-130 км/ч. на ровных отрезках пути. В таком режиме нужно проехать 10-20 километров. Продолжительная работа форсунок под нагрузкой позволяет реализовать так называемую самоочистку.

Напоследок добавим, что перечисленные выше способы очистки позволяют удалить только незначительные загрязнения. Серьезно забитый инжектор необходимо чистить механически, составами под давлением или ультразвуком. Что касается промывки форсунок, специалисты рекомендуют промывать инжектор каждые 30-40 тыс. пройденных километров.

Чистку инжектора стоит делать для профилактики, а не после появления признаков неисправности. Если автомобиль эксплуатируется в режиме городской езды на топливе сомнительного качества, тогда интервал профилактических мер следует сократить применительно к индивидуальным условиям эксплуатации.

Читайте также

Когда и для чего нужно снимать топливные форсунки с двигателя. Снятие форсунок на бензиновом и дизельном моторе: особенности процесса демонтажа.

  • Чистка инжектора автомобиля без снятия форсунок. Способы очистки форсунок со снятием на кавитационном стенде. Ультразвуковая и гидродинамическая кавитация.


  • Дизельная форсунка представляет собой один из главных элементов системы питания дизельного двигателя. Форсунка (инжектор) обеспечивает прямую подачу солярки в камеру сгорания дизеля, а также дозирование подаваемого топлива с высокой частотой (более 2 тыс. импульсов в минуту). Инжектор осуществляет эффективный распыл горючего в пространстве над . Топливо в результате такого распыла получает форму факела. Форсунки отличных друг от друга систем топливоподачи имеют конструктивные особенности, различаются по способу управления. Инжекторы делят на две группы:

    • механические;
    • электромеханические;

    Читайте в этой статье

    Принцип работы механической форсунки

    Принцип работы системы питания дизеля с механическим управлением форсунки состоит в следующем. К подается горючее из . За подачу отвечает подкачивающий насос, который создает низкое давление, необходимое для прокачки солярки по топливопроводам.

    Далее ТНВД в нужной последовательности осуществляет распределение и нагнетание горючего под высоким давлением в магистрали, ведущие к механической форсунке. Каждая форсунка данного типа открывается для очередного впрыска порции солярки в цилиндры под воздействием высокого давления топлива. Снижение давления приводит к закрытию дизельной топливной форсунки.

    Простой механический инжектор имеет корпус, распылитель, иглу и одну пружину. В устройстве запорная игла свободно движется по направляющему каналу распылителя. Сопло форсунки плотно перекрывается в тот момент, когда нет нужного давления от ТНВД. Внизу игла опирается на уплотнение распылителя, имеющее коническую форму. Прижим иглы реализован посредством закрепленной сверху пружины.

    Распылитель является одной из важнейших составных деталей среди других элементов в устройстве инжекторной форсунки. Распылители могут иметь разное количество распылительных отверстий, отличаться способом регулировки подачи топлива.

    Простые дизельные моторы, которые имеют разделенную камеру сгорания, зачастую получают распылитель с одним отверстием и иглой. Дизельные моторы, которые устроены на основе непосредственного впрыска топлива, оборудованы форсунками с несколькими распылительными отверстиями. Число отверстий в таком распылителе колеблется от двух до шести.

    Подача топлива регулируется зависимо от конструкции распылителя, так как существуют два основных типа подобных решений:

    • распылитель с возможностью перекрытия каналов;
    • распылитель с перекрываемым объемом;

    В первом случае игла форсунки перекрывает подачу горючего путем перекрытия каждого отверстия. Второй тип форсунок означает, что игла перекрывает своеобразную камеру в нижней части распылителя.

    Давление топлива, нагнетаемого ТНВД, заставляет иглу подниматься благодаря наличию на поверхности такой иглы специальной ступеньки. Солярка проникает в корпус под указанной ступенькой. В момент, когда давление горючего сильнее усилия, которое создает прижимная пружина, игла движется вверх. Таким образом открывается канал распылителя. Дизтопливо под давлением проходит через распылитель и происходит его распыл в форме факела. Так реализован впрыск топлива.

    Далее определенное количество горючего, которое подается насосом высокого давления, пройдет через распылитель и попадет в камеру сгорания. После этого давление на ступеньке иглы начинает снижаться, в результате чего игла от усилия пружины возвращается в исходное положение и плотно перекрывает канал. Тогда подача солярки в распылитель полностью прекращается.

    Инжектор с двумя пружинами

    На эффективность топливоподачи и последующего сгорания топлива в цилиндрах дизеля можно влиять, изменяя различные характеристики форсунки, такие как структура и количество каналов распылителя, усилие пружины и т.п. Одним из конструкторских решений стало внедрение в устройство форсунок специального датчика подъема иглы. Данный подъем учитывается специальными электронными блоками управления, которые взаимодействуют с ТНВД.

    Еще одним витком развития стали дизельные форсунки с двумя пружинами. Устройство таких форсунок сложнее, но результатом становится большая гибкость в процессе подачи топлива. Сгорание рабочей смеси становится более мягким, дизель тише работает.

    Особенностью работы указанных инжекторов является двухступенчатый подъем иглы. Получается, нагнетаемое ТНВД топливо сначала превышает по силе давления силу сопротивления одной пружины, а затем другой. В режиме холостого хода и при небольших нагрузках на мотор впрыск осуществляется только посредством первой ступени, подавая в двигатель незначительное количество солярки. Когда мотор выходит на режим нагрузки, давление нагнетаемого ТНВД топлива растет, горючее подается уже двумя дозированными порциями. Первый впрыск небольшого объема (1/5 от общего количества), а далее основной (около 80% солярки). Разница давлений впрыска для открытия первой и второй ступени не особенно большая, что обеспечивает плавность топливоподачи.

    Такой подход позволил повысить равномерность, эффективность и полноценность сгорания смеси. Дизельный двигатель стал расходовать меньше горючего, снизилось количество токсичных примесей в выхлопных газах. Дизельные форсунки с двумя пружинами активно использовались на агрегатах с непосредственным впрыском топлива до момента появления систем питания под названием Commоn Rail.

    Электромеханическая дизельная форсунка

    Дальнейшее развитие систем топливоподачи дизельного привело к появлению форсунок, в которых солярка подается в цилиндры посредством электромеханических форсунок. В таких инжекторах игла форсунки открывает и закрывает доступ к распылителю не под воздействием давления топлива и противодействия силе пружины, а при помощи специального управляемого электромагнитного клапана. Клапан контролируется двигателя, без соответствующего сигнала которого горючее не попадет в распылитель.

    Блок управления отвечает за момент начала топливного впрыска и длительность подачи топлива. Получается, ЭБУ дозирует солярку для дизеля путем подачи на клапан форсунки определенного количества импульсов. Параметры импульсов напрямую зависят от того, с какой частотой вращается двигателя, в каком режиме работает дизельный мотор, какая температура ДВС и т.д.

    В системе питания Common Rail электромеханическая форсунка может за один цикл реализовать подачу топлива посредством нескольких раздельных импульсов (впрысков). Топливный впрыск за цикл осуществляется до 7 раз. Давление впрыска также значительно повысилось сравнительно с предыдущими системами.

    Благодаря дозированной высокоточной подаче давление газов на поршень в результате сгорания смеси растет плавно, сама топливно-воздушная смесь равномернее распределяется по цилиндрам дизеля, лучше распыляется и полноценно сгорает.

    Дальнейшее видео наглядно иллюстрирует принцип работы электромеханической форсунки на примере бензинового двигателя. Главное отличие заключается в том, что давление топлива в дизельной форсунке значительно выше.

    Указанный подход позволил окончательно переложить задачу по управлению впрыском с форсунок и ТНВД на электронный блок. Электронный впрыск работает намного точнее, дизель с подобными решениями стал еще более мощным, экономичным и экологичным. Разработчикам удалось значительно снизить вибрации и шумы в процессе работы дизельного агрегата, повысить общий ресурс ДВС.

    Одной из разновидностей систем питания дизеля являются конструкции, в которых полностью отсутствует ТНВД. За создание высокого давления впрыска отвечают так называемые дизельные насос-форсунки. Принцип работы системы состоит в том, что насос низкого давления сначала подает солярку напрямую к инжектору, в котором уже имеется собственная плунжерная пара для создания высокого давления впрыска. Плунжерная пара форсунки работает от прямого воздействия на нее кулачков . Данная система позволяет добиться лучшего качества распыла дизтоплива благодаря способности создать очень высокое давление впрыска.

    Исключение из системы подачи топлива ТНВД позволяет сделать размещение дизельного ДВС под капотом более компактным, избавиться от привода топливного насоса и отбора мощности на его постоянное вращение. Также стало возможным удалить из системы питания решения, которые распределяют топливо от ТНВД по цилиндрам. Инжекторы в системе с насос-форсунками имеют электрический клапан, что позволяет подавать топливо за два импульса.

    Принцип похож на работу механической форсунки с двумя пружинами. Решение позволяет реализовать сначала подвпрыск, а уже затем произвести подачу в цилиндр основной порции горючего. Насос-форсунки реализуют подачу топлива в максимально точно заданный момент начала впрыска, лучше дозируют солярку. Дизельный мотор с такой системой экономичен, работает мягко и тихо, содержание вредных веществ в отработавших газах сведено к минимуму.

    Главным минусом решения можно считать то, что давление впрыска насос-форсунки напрямую зависит от частоты вращения коленвала двигателя. В списке недостатков также отмечены: сложность исполнения, высокая требовательность к моторному маслу, чистоте и качеству топлива. В процессе эксплуатации выделяют трудности в процессе ремонта и обслуживания, а также общую дороговизну сравнительно с системами, которые оборудованы привычным ТНВД.

    Читайте также

    Неисправности форсунок дизеля, проверка и самостоятельное выявление проблем. Очистка сопла форсунок дизельного двигателя, регулирование давления впрыска.

  • Особенности работы и причины неисправностей дизельных форсунок. Как самостоятельно выполнить снятие, дефектовку, разборку и ремонт форсунок дизельного ДВС.


  • Форсунки — основной элемент дизельных двигателей и бензиновых двигателей с системой впрыска топлива (инжекторов). На сегодняшний день существует несколько принципиально разных типов форсунок, которые находят применение в двигателях различных конструкций. Обо всем этом - читайте в представленной статье.

    Назначение и виды форсунок

    В дизельных и инжекторных бензиновых двигателях применяются системы впрыска топлива, в которых главную роль играют форсунки - специальные устройства, распыляющие топливо в камере сгорания. В основе работы бензиновых и дизельных форсунок лежит одинаковый принцип: топливо распыляется, проходя под высоким давлением через сопло особой формы (они создают топливный факел, в котором жидкое топливо разбивается на микроскопические капли и смешивается с воздухом).

    Однако форсунки инжекторных бензиновых моторах работают под относительно небольшим давлением в единицы атмосфер, в то время как форсунки дизельных двигателей работают под давлением в сотни, а иногда и в тысячи атмосфер.

    На сегодняшний день применение находят четыре типа форсунок:

    Механические;
    - Электромагнитные (электромеханические);
    - Электрогидравлические;
    - Пьезоэлектрические.

    Каждый тип форсунок имеет свои особенности и сферы применения.

    Механические форсунки

    Механическая форсунка - это «классическое» решение, которое применяется многие десятилетия и сейчас не теряет своей актуальности. Механическая форсунка - это, в сущности, клапан, открываемый при достижении определенного давления. Основу такой форсунки составляет корпус, внутри которого находится игла, которая под действием пружины закрывает сопло. Топливо от ТНВД под давлением поступает в кольцевую камеру между корпусом и иглой и приподнимает иглу - в этот момент открывается сопло, и топливо распыляется в камеру сгорания. При снижении давления игла снова закрывает сопло.

    Механическая форсунка очень проста и надежна, однако она не может обеспечить характеристик, которые предъявляются к современным дизельным двигателям. Поэтому ее постепенно вытесняют другие типы форсунок.


    Электромагнитная форсунка отличается от механической тем, что игла в ней поднимается под действием встроенного электромагнита по сигналу от контроллера. Электромагнит обычно располагается в верхней части форсунки, игла соединена с якорем электромагнита, поэтому при подаче напряжения она поднимается вверх и открывает сопло.

    Сегодня обычные электромагнитные форсунки используются на инжекторных бензиновых двигателях, так как они плохо работают под теми высокими давлениями, которые необходимы для дизелей.



    Электрогидравлическая форсунка объединяет в себе преимущества электромагнитной и механической форсунок. В форсунке этого типа топливо давит на иглу с двух сторон - сверху и снизу, где находятся топливные камеры. Обе камеры связаны между собой, поэтому давление топлива в них равно и игла закрывает сопло. Однако верхняя камера (она называется камерой управления) через электромагнитный клапан связана со сливной магистралью, а топливо из впускной магистрали поступает в эту камеру через канал с сужением - дросселем.

    Принцип действия электрогидравлический форсунки сводится к следующему. Когда клапан закрыт, игла прижата к седлу и закрывает сопло. При подаче на клапан импульса он открывается, топливо из камеры управления поступает в сливную магистраль и давление в камере резко падает - в этот момент игла, на которую топливо теперь давит только снизу, открывается, происходит впрыск. Камера управления в момент открытия форсунки остается связанной с впускной магистралью, однако впускной дроссель не дает топливу быстро заполнить эту камеру.

    Электрогидравлическая форсунка получила широкое распространение в дизельных двигателях, в том числе и в системах впрыска топлива Common Rail. Эти простые и надежные устройства обеспечивают длительную и качественную работу двигателя.



    Пьезоэлектрические форсунки - наиболее современное и надежное решение, которое сегодня находит все более широкое применение на дизельных двигателях с системой впрыска Common Rail. В целом принцип действия этой форсунки повторяет принцип, заложенный в форсунках электрогидравлического типа, однако в ней клапан, открывающий путь топливу из верхней камеры в сливную магистраль, срабатывает под действием пьезоэлектрического кристалла.

    Как известно, в ряде кристаллов наблюдается пьезоэлектрический эффект - под воздействием внешней силы они деформируются с образованием электрического заряда. Такие кристаллы подвержены и обратному эффекту - под действием электричества они деформируются, изменяя свои размеры. В пьезоэлектрических форсунках используются кристаллы, которые при подаче напряжения увеличивают свою длину и толкают собой поршень клапана, выпускающего топливо из верхней камеры в сливную магистраль.

    Большое преимущество пьезоэлектрических форсунок - их быстродействие. Изменение длины кристалла и открытие клапана в них происходит в среднем в 4 раза быстрее, чем открытие клапана электромагнитного типа. Это открыло путь к реализации многократного впрыска за один такт, что улучшает характеристики двигателя. В современных дизельных моторах впрыск может производиться до девяти раз за один такт.

    Автомобильная форсунка – это устройство, которое отвечает за непосредственное распыление топлива внутри камеры сгорания. И от того, как устроена ее конструкция, слаженности работы каждого механизма зависит не только мощность автомобиля, но и расход топлива.

    По сути это такой миниатюрный насос, с помощью которого топливо (топливная смесь) попадает к своему конечному пункту назначения, где преобразуется в энергию. На начальном этапе вы теперь понимаете, что такое форсунка в автомобиле и какие функции она выполняет. Давайте продвигаться дальше.

    Сегодня эти устройства выполняются в различных модификациях, каждая из которых имеет свои собственные преимущества. Конкретно это механические, электромагнитные форсунки, дальше следуют пьезоэлектрические, а также электрогидравлические.

    Основные сведения о форсунке

    Конструктивные особенности форсунок определены их главной задачей – точным постоянным дозированием нужного количества топлива, подаваемого в камеру сгорания. Давление, создаваемое в форсунке, напрямую зависит от типа топлива, которое через нее проходит. Оно может находиться на уровне 200 МПа, при этом сохраняется на небольшом промежутке времени (а это около 1-2 миллисекунд).

    Не все форсунки имеют стандартизированный вид. Они отличаются между собой формой, способом распыления, размерами распылительных элементов, порядком управления процессом. Здесь же важно отметить разность систем впрыска, используемых для различного рода и вида техники. Наиболее распространенные распылители — штифтовые, применяемые совместно с форкамерной зажигательной системой, а также дырчатые, характерные для двигателей, работающих на дизельном топливе.

    Важно отметить, что внутренний механизм также напрямую зависит и от способа управления форсунками. Они могут быть одно пружинными, либо же двух пружинными с применением специальных датчиков контроля.

    Кроме распыления топлива форсунка должна обеспечивать герметичность для камеры сгорания, чтобы двигатель не терял мощность в процессе работы. Для этого современными разработчиками внедряются различные хитрости и рациональные предложения, с помощью которых внедряется две и более степени перекачки топлива. А вот общий контроль топлива производится с помощью специального блока управления, управляющего электромагнитными клапанами подачи топлива.

    Теперь же немного более конкретных данных о реальной пользе форсунок и их роли в процессе обеспечения работы автомобиля. Прежде всего, это устройство является основным связывающим элементом между двигателем и топливным насосом. Их предназначение можно описать так:

    — обеспечивать правильную дозировку подаваемого в двигатель топлива;

    — обеспечивать правильную струю (угол, давление, количество) смеси, а также ее подготовку;

    — посреднические действия между общей системой формирования и впрыска и камерой сгорания;

    — выдержка правильной кривой скорости сброса.

    Конструктивные особенности форсунок напрямую зависят от конкретной модификации и способа управления (подачи смеси). Но наиболее эффективными, рациональными и практичными сегодня считаются пьезоэлектрические форсунки. Их преимущество в возможности многократного впрыска за один цикл, а также скорости срабатывания.

    Наиболее распространенными проблемами, из-за которых возникает загрязнение устройства подачи топлива и в дальнейшем автомобиль начинает «барахлить», является возникновение отложение на стенках форсунок, образующиеся из-за использования некачественного, либо с различными примесями топлива. Все это может стать причиной перебоя работы, повышения расхода топлива, беспричинной потери мощности.

    Чтобы этого избежать – необходимо периодически осуществлять промывку топливных форсунок.

    Определить начало проблем достаточно просто. Их видно по таким основным признакам:

    — в процессе запуска двигателя начинаются незапланированные сбои;

    — количество потребляемого топлива стало существенно выше номинального (нормального) расхода;

    — выхлопы стали иметь нехарактерный черный цвет;

    — работа двигателя отмечается троением (двоением);

    — когда двигатель на холостых оборотах часты сбои его функционирования в ритмичном и бесперебойном режиме.

    Как правило, особого труда в этом случае решить проблему не представляет. Для этого потребуется просто промыть, прочистить и установить в прежнее положение форсунку. Здесь важно удалить все загрязнения, которые и стали причиной сбоев.

    Сделать это можно:

    — используя специальную жидкость самостоятельно вручную;

    — ультразвуковой очисткой;

    — путем добавления в топливо специальных очистительных присадок (без разбора двигателя);

    — на специальном стенде, используя специальную жидкость для очистки.

    Выбор способа очистки напрямую зависит от степени загрязнения устройства и проблем, которые возникают при запуске двигателя. Немаловажно здесь время, когда вы «спохватились» и решили устранить неполадку. Чем оно раньше, тем мене затратный по времени и средствам способ очистки можно подобрать.

    На практике наиболее часто используют очистку присадками или в домашних условиях вручную. Это наиболее дешевые и простые способы очистки. Если же автомобиль попадает на специальный сервис – тогда могут использовать очистку на стенде, либо же ультразвуком. Последний способ очистки считается самым жестким и целесообразен в случаях, если форсунка имеет очень сильные загрязнения, отмыть обычной жидкостью которые не представляется возможным.

    Сейчас практически на любом бензиновом моторе легкового автомобиля, используется инжекторная система питания, которая пришла на смену . Инжектор благодаря ряду рабочих характеристик превосходит карбюраторную систему, поэтому он является более востребованным.

    Немного истории

    Активно устанавливаться такая система питания на автомобилях стала со средины 80-х годов, когда начали вводиться нормы экологичности выбросов. Сама идея инжекторной системы впрыска топлива появилась значительно раньше, еще в 30-х годах. Но тогда основная задача крылась не в экологичном выхлопе, а повышении мощности.

    Первые инжекторные системы применялись в боевой авиации. На то время, это была полностью механическая конструкция, которая вполне неплохо выполняла свои функции. С появлением реактивных двигателей, инжекторы практически перестали использоваться в военной авиатехнике. На автомобилях же механический инжектор особо распространения не получил, поскольку он не мог полноценно выполнять возложенные функции. Дело в том, что режимы двигателя автомобиля меняются значительно чаще, чем у самолета, и механическая система не успевала своевременно подстраиваться под работу мотора. В этом плане карбюратор выигрывал.

    Но активное развитие электроники дало «вторую жизнь» инжекторной системе. И немаловажную роль в этом сыграла борьба за уменьшение выброса вредных веществ. В поисках замены карбюратору, который уже не соответствовал нормативам экологии, конструкторы вернулись к инжекторной системе впрыска топлива, но кардинально пересмотрели ее работу и конструкцию.

    Что такое инжектор и чем он хорош

    Инжектор дословно переводится как «впрыскивание», поэтому второе название его – система впрыска с помощью специальной форсунки. Если в карбюраторе топливо подмешивалось к воздуху за счет разрежения, создаваемого в цилиндрах мотора, то в инжекторном моторе бензин подается принудительно. Это самое кардинальное различие между карбюратором и инжектором.

    Достоинствами инжекторного двигателя, относительно карбюраторных, такие:

    1. Экономичность расхода;
    2. Лучший выход мощности;
    3. Меньшее количество вредных веществ в выхлопных газах;
    4. Легкость пуска мотора при любых условиях.

    И достигнуть этого всего удалось благодаря тому, что бензин подается порционно, в соответствии с режимом работы мотора. Из-за такой особенности в цилиндры мотора поступает топливовоздушная смесь в оптимальных пропорциях. В результате, практически на всех режимах работы силовой установки в цилиндрах происходит максимально возможное сгорание топлива с меньшим содержанием вредных веществ и повышенным выходом мощности.

    Видео: Принцип работы системы питания инжекторного двигателя

    Виды инжекторов

    Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электронные элементы, способствовавшие лучшей работе мотора.

    Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же .

    Всего существует три типа инжекторных систем впрыска, различающихся по типу подачи топлива:

    1. Центральная;
    2. Распределенная;
    3. Непосредственная.

    1. Центральная

    Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

    Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

    2. Распределенная

    Распределенный впрыск топлива

    Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У такого типа инжекторных двигателей топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

    Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

    К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

    3. Непосредственная

    Система непосредственного впрыска топлива

    Система непосредственного впрыска на данный момент – самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она сложная по конструкции и очень требовательна к качеству бензина.

    Конструкция и принцип работы инжектора

    Поскольку система распределенного впрыска – самая распространенная, то на именно на ее примере рассмотрим конструкцию и принцип работы инжектора.

    Условно эту систему можно разделить на две части – механическую и электронную. Первую дополнительно можно назвать исполнительной, поскольку благодаря ей обеспечивается подача компонентов топливовоздушной смеси в цилиндры. Электронная же часть обеспечивает контроль и управление системой.

    Механическая составляющая инжектора

    Система питания автомобилей ВАЗ 2108, 2109, 21099

    К механической части инжектора относится:

    • топливный бак;
    • электрический ;
    • фильтр очистки бензина;
    • топливопроводы высокого давления;
    • топливная рампа;
    • форсунки;
    • дроссельный узел;

    Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

    Видео: Инжектор

    Принцип работы инжектора

    Что касается назначения каждого из них, то все просто. Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

    Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенной со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

    Раньше форсунки были полностью механическими, и срабатывали они от давления топлива. При достижении определенного значения давления топливо, преодолевая усилие пружины форсунки, открывало клапан подачи и впрыскивалось через распылитель.

    Современная форсунка – электромагнитная. В ее основе лежит обычный соленоид, то есть проволочная обмотка и якорь. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

    С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

    Электронная составляющая

    Основным элементом электронной части инжекторной системы подачи топлива является электронный блок, состоящий из контролера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

    Для своей работы ЭБУ использует показания датчиков:

    1. . Это датчик, который определяет остатки несгоревшего воздуха в выхлопных газах. На основе показаний лямбда-зонда ЭБУ оценивает как соблюдается смесеобразование в необходимых пропорциях. Устанавливается в выпускной системе авто.
    2. Датчик массового расхода воздуха (аббр. ДМРВ). Этим датчиком определяется количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами. Расположен в корпусе воздушного фильтрующего элемента;
    3. (аббр. ДПДЗ). Этот датчик подает сигнал о положении педали акселератора. Установлен в дроссельном узле;
    4. Датчик температуры силовой установки. На основе показаний этого элемента регулируется состав смеси в зависимости от температуры мотора. Располагается возле термостата;
    5. (аббр. ДПКВ). На основе показаний этого датчика определяется цилиндр, в который необходимо подать порцию топлива, время подачи бензина, и искрообразование. Установлен возле шкива коленчатого вала;
    6. . Необходим для выявления образования детонационного сгорания и принятия мер для его устранения. Расположен на блоке цилиндров;
    7. Датчик скорости. Нужен для создания импульсов, по которым высчитывается скорость движения авто. На основе его показаний делается корректировка топливной смеси. Установлен на коробке передач;
    8. Датчик фаз. Он предназначен для определения углового положения распредвала. На некоторых автомобилях может отсутствовать. При наличии этого датчика в двигателе выполняется фазированный впрыск, то есть, импульс на открытие поступает только для конкретной форсунки. Если этого датчика нет, то форсунки работают в парном режиме, когда сигнал на открытие подается сразу на две форсунки. Установлен в головке блока;

    Теперь коротко от том, как все работает. Элекробензонасос заполняет всю систему топливом. Контролер получает показания от все датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

    Что касается подачи топлива, то на основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

    При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

    Похожие статьи